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Abstract

T'he Near Farth Asteroid Rendezvous (N E AR)ission spacecraft Will arrive at Asteroid 433 Eros
in February, 1999.Following an initial period of characterizat lon, the science phase of the mission will
commence, and unprecedented information concerning an asteroid’s shape, mass, density, composition and
rotational dynamics will be sent to Farth for analysis. It will also mark the start of orbital cperations
about the most complex and irregular gravity fieldever encountered in the history of space exploration.
The severity of Fros’ distortion from the usual spheroid bodies encountered in planetary exploration leads
to fundamental differences in the orbital dynamics about it. Operations atrout Eros will dso serve as an
exciting test of orbit determination and prediction in an orbital environment whichcanbe chaotic in some
instances. This paper reviews the expected orbital dynamic environment of the NEAR spacecraft at Eros,
discusses the problem of orbit control of the NEAR spacecraft o1 bitand presents the nominal mission plan.

The dynamical environment may be differentiated according to whether the spacecraft is close to or
far from Eros. When far from FEros, the spacecraft must contend with the solar tide and solar radiation
pressure (SRP) which arc large perturbations tc, the Eros attractive force. When close to Eros, the spacecraft
must contend with the potentially irregular gravity field of the body- In this situation, there are potential
orbits which are quite unstable and may crash onto the asteroid surface in a matter of days. Obviously, it
is important to understand when and where such orbits exist, and how they may be avoided.

There arc a number of mission specific constraints which the NEAR spacecraft must operate under.
These include both pointing, operational, and safety concerns as well as science directives and goals. The
application of these constraints in the NEAR spacecraft environment at FEros is discussed, including some
specific strategy implementations.

Combining the orbit control issues with the actual dates that the NNAR spacecraft arrives at Iiros, a
nominal plan is produced and briefly described which satisfies all the orbital constraints and fulfills specific
science directives and goals. Some perturbations to this planarc briefly mentioned.

1 Introduction

The occasion of the first asteroid orbiter has forced thought to be given to the interesting problem of
satellite dynamics about asteroids, specifically in the case of the N1A Rinission of the dynamics of
the NEAR spat.ec.raft about the asteroid Eros. The theory of asteroid orbiters shares some similarity
with traditional theories of planctary orbiters, yet it is aso much richer inmany instances. Of specific
interest areregimes of motion about an asteroid which are chaotic with a time scale on the order
of days, allowing for such effects to be seriously considered and consciously avoided in deriving the
control p hilosophy of the orbital phase. The existence of such dynarmics was originally noted by J .1<.




Miller of the Jet I'repulsion Labinthe 80'S, and hasmorerceently been investigated in detail by
Reference[Cjayvincauet al.] and [Schemes].

In order to develop a robust and safe orbital plan for the NEAR mission, it isimperative that
the genera] dynamics of suchan orbiter be understood andthat the orbit controlbe applied with the
natural dynamics of the system in mind, so as to avoid dangerous Of operationally intensive situa-
tions. The current paper gives a brief summary of the relevant dynanics which will be encountered
by the NEAR spacecraft at Eros. It aso reviews the current orbit control constraintsand discusses
bow they will beimplemented during operations. Finally, it presents t he norninal mission plan for
orbital operations, aswell as a description of this plan.

Scetion 2 lists the nominal paramneters of interest for the NIKAR spacecraft dynamics at Fros.
For the spacecraft these include the spacecraft mass and total projecied area i'or the asteroid Ioros,
these include its orbital elements and its predicted size, density and rotational dynamics.

Section 3 discusses the dynamics the spacecraft will encounter when further than ~200 km
from Eros. lor such a small central body, thesolartideand solar radiation pressure become
significant effects which must be properly understood and modeled. Topics of discussion include
long term stability of the NEAR spacccraft in afar orbit and a direct comparison of the diflerent
perturbations acting on the spacecraft orbit. Section 4 discusses the dynamicsthe spacecraft will
encounter when close to Fros. Included is a discussion on periodic orbits, orbits stable against
crashing on the asteroid, resonance effects andsome general results onretrograde orbiters. The
complicated nature of the dynamics in some orbital regimes is highlighted, and attempts are made
to ™MaP out regions where the NEAR spacecrafl can orbit in relative safety.

Section 5 lists the heuristic mission constraints for the NEAR orbits] mission and proceeds
to detail how each will be met. The control problem can be decomposedinto control of the asteroid
inclination, node and radius. Specific methodologies tobeused are discussed. Some of thc details
of timinp] control arc briefly inentioned as well. Section 6 presents the current nominal mission plan
which 8Cheres to the stated mission constraints and satisfies thenominal science requirements.

2 Spacecraft and Asteroid Definition

As this paper deals with a specific mission, With & well defined spacecraft and a fairly well defined
asteroid, it is possible toinject real numbers and parameters into tile discussion.

2.1 NEAR Spacecraft Parameters

At launch the NEAR spacecraft will weigh in at approximately g5 kg. During the inter-planetary
cruise and Eros rendezvous, the craft will usc the major portion of 'S fueland its mass at the start
of orbital operations will beapproximately 500 kg. The total area of the NEAR spacecraft solar
arrays are 9 m? and are mounted on a bus of approximate area 3.24 m®. This leads to an estimate
of the total spacecraft area subject to solar radiation pressure (SRP) of 12.24m?. A parameter of
interest is the spacecraft mass to area ratio, designatedas B. For the NEAR spacceraft after Eros
rendezvous, this parameter will have a value of B~ 40.85 kg/mn This parawcter drives the effect
which the ZRP has on the spacecraft orbits.

2.2 Eros Parameters

The orbital paramcters of Xros have been determinedby Yeomans as (REF[Yeomans]):

a = 14583AU )
¢ = 0.2230 2
i = 10.8308dcg (3)
w = 178.5677 deg (4




Q= 304.4405 deg (5)
7, = 1996March 12.5183 (6)

Some additional parameters of the orbit are the orbital period, 7 == 1.76 years, and the radius of
perihelion and aphelion, 1.1331 and 1.7835 AU respectively. Finaly, the angularrate of Eros about
the sun, N, will vary from 1.8255 x 107 rad/s at perihelion to 7.3685x 10" % rad/s at aphelion.

The actual size, shape, density and rotational dynarnics of Eros are currently unknown, al-  ~
though there arc bounds and estimnates on al of ithese parameters. Reference[Yeorans] gives a shape
bound on Eros of 40.5 4+ 3.1 x 145 :+ 2.3 x }4.1+2.3 km, and a spin period of 5.27011 hours with
its rotation pole located at anecliptic latitude and longitude of 11° and16° respectively (B1950,
uncertain by a few degrees). These nominal numbers are used thronghout this paper except where
noted (in the scction on periodic orbit families and zero-velocity curves), As Eros is classified as
an S type asteroid, a reasonable supposition for its density is 3.5g/cm?®, although this value is quite
uncertain. ‘Givern these, dl that is needed to finally specify the Erosmodel is a shape. A tri-axial
ellipsoid model is assumed for most computations with the nominal size as givenby Yeomans. For
the computation of the zero-velocity surfaces, periodic orbits and equilibriumn points, the APIL-0
shape model for Eros is used. This shape model is briefly describedin Section 4. Once the actual
Eros parameters are determined, they will be substituted into the analysis.

Hased on the expected values of Eros size and density, the gravitational parameter used in
this paper is:

g = 1012 x 10°km®/s? (1)

The most important terms of the harmonic expansion of the gravity field correspond to the second
degree harmonics,C20 and 6'22. For the tri-axial elipsoid J ros model these are:

Cypo = 363/} (

Cy = 17.9/1,: (9

o
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where r, is an arbitrary normalization radius

3 Spacecraft Dynamics Far From Eros

When sufliciently far from Eros (> 200 km), it is acceptable to approximate the asteroid as a point
mass (for modeling the gross properties of the dynamics). Note that some of the lowerdegree gravity
harmonics may be detectable at these distances, but they have no major affect on the tragjectory.
For gtudying this case, choose preference frame centered at Eros and rotating so that the —X axis
always points at the sun. Choose the Z axis along the angular momentum vector of Eros' orbit
about the sun, and then choose the Y axis according to tile right-hand rule.

In this regime, the significant forces arise from the atiraction of Lros, tile tidal force of the
sun and the solar radiation pressure (SRP) acting on the spacecraft. Assuming that the spacecraft
solar arrays are oricnted to face the sun the equations of iotion can be stated as:

nX

X - 2NY = L5+ 3N2X g (lo)
. . Y
Y + 2N'X ... KT 11
s (11)
. 7
i = »—%—A”QZ (12)

where g is the SRP force delivered to the spacecraft, N’istheangular rate of Fros about the sun
and R is the radius of the spacecraft from the center of Iiros. The SRI’ acceleration is computed to
be (REF[Scheeres]):

g = 1.0880 x 10',;:.—)11(1[‘1/5?' (1 3 )
&




where R is the radius of FEros’ orbit about the sunin AU. For the NEA Rspacecraft at Eros this
parameter Will range from 8.47 x 10--" km/s? a perihiclion to 3.42x107 " kin/s? at aphelion.

3.1 Stationary Points

Of interest for this dynamical system are those points where aspacecraft would idedly remain at rest
if placedthere with no relative velocity. Inthe absence of SRP forces, the tida and Fros attraction’
forces will cancel outatthe locations:

. B3R
Xgp = & (3’1—\1,72) (14)
~ +2163.494 — *3961.177 km (15)

where therange depends on whether Kros is a perihelion or aphelion.
The addition of SRI’forces modifies the location of these stationary points. The equation

{from which to solve for them becomes:

X )3; (x>2 X, 16
X T XE IxXi (10

Y 5% (0
At periheliop the parameter ¢=: 0.3916, while at aphelion the parameterise- 0.5301. Analytically,
the location of these new points arc:
4

i I
Xs = =*Xpg [IZFB(-‘FE)*(Q-F"'] (1s)

which is accurate to the order of 10 kilometers, Solving the cquations exactly yields the following
stationary points for the Iiros- NEAR spacecraft system:

(19)

Yo = 1915, -2486km at perihelion
57 3371, —4799 km at aphelion

These stationary points are, of course, unstable and would require some sort of closed loop control
for the spacecraft to remain in their vicinity. From a mission poiut of view these solutions are
not necessarily interesting either. They are useful in that they characterize where the solar tide,
gravitational and SRP forces are equal, and hence delineate where the Fros gravity field begins to
dominate.

3.2 Stability of Spacecraft Orbits

A question of interest is whether or ot a spacecraft is bound to an asteroid for a long time duration,
or if the spacecraft might escape over a fairly short time if not controlled. These questions may be
answered by a quick study of the zero-velocity curves of the current systeni.

I'irst note that iquat ions 10- 12 have a Jacobi integ: al, stated as:
mL3

1 ,
+ G NPXT NP g X T (20)

C R 2

where (', is the Jacobi constant and T is the kinetic energy of the spacecraft with respect to the
current. coordinate frame. In actuality the angular rate N’ varies in timeand thus the integral does
not truly exist. However, over short periods of time it is useful to approxitnate the time varying N’
with a constant value.

The zero-velocity curves are foundby equating the kinetic energy 7'to zero and solving the
resultant equation. SeeFigurel for a projection of the zero velocity surface into the X-Y plane for
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Figure 1: Zero-Velocity Curvesin the Xy plane

the current case a periapsis. The location of the tWO stationary orbits can be clearly seen in this
figure.

Given a spacecraft initially close to the asteroid, a criterion for ittoremain close to the
asteroid and not escape is that its Jacobi constant have a value ¢, > C'y , where Cyisthe Jacobi
constant of the St ationary point along the 4-X axis, When this inequality is satisfied,the spacecraft
Gauotleave the vidinity of the asteroid ancl escape; when it is not satisfied, the possibility exists,

¢ stationary POIMIS 1o Jacobi constant can be approximated by:
5

Ca = FN*Xpd9Xp + (21)

Yor the NIJAR-Bros system the value of this constant, ¢, ranges from 5.73 x 10" "kin®/s? at peri-
helionto 3.48x 10"km?/s? at aphelion.

At Eros rendezvous,the NEAR spacecraft willinitially orbit Eros in a circular orbit close
to the terminator (i.e. close to the solar plane-of-sky). Thus it is of interest to apply the capture
criterion to such an orbit. Assume a circular orbit with its orbit angularmomentum pointed towards
the sun. Then the Jacobi integral can be written as:

C, = 1 [ﬁ.__aszlzl (22)
. . 21la
Applying (1o stability criterion Y1¢148 the inequality:
2C
a® +4 —'lea - %5 < 0 (23)

It is easy to sce that there is a unique positive value of abelow whichthe inequality is satisfied.
For our situation, this value ranges from 865k at periapsis to 1432 kin at apoapsis. Note that
the initial NEAR orbit is circular at 1000 km with Eros approaching perihelion, indicating that if



left unattended for a suflicient period of timejthe spacecraft may escape fromthe vicinity of Eros.
Nominal mission plans only call for the spacecraft to be at this radius for a period of a few weeks
while the time scale for unstable behavior is onthe order of hundreds of days, making this type of
instability controllable and not an issue. Of greater concern is t hat the eccentricity of this initialy
circular orbit approaches 1 after approximately140days (see Reference [Scheeres]), placing a finite
time on how long such an orbit could beleft unattended. Note that anorbitinthe solar planc-of-sky
with a semi-major axis of 1000 km, an eccentricity of 0.794(206 x 1794kin)and a properly chosen
argument of periapsis will remain trapped at Eros inthe solar plane-of-sky for an arbitrarily long
period of time (sce Reference [Scheeres]). All following orbits willbe at radii of 200 km or less and
hence for the remainder of the mission the NEAR spacecraft willbe definitely trapped at Eros.

3.3 Comparison With Gravity Harmonics Effects

Of interest is the effectivesphere of influence of the various perturbations acting on the spacecraft,

the main ones being the solar tide, solar radiation pressure and the gravity harinonics of Iiros. An
efficient way in which tomeasure thesec effectsis to compare how these different forces affect Lho/

spacecraft orhit, notably how they cffect the secular rate of change in the orbitnode and periapsis;

In general, far fromVros the tida force will dorinate, while at intermediate distances the SRP force‘,

dominates and at closc distances the gravitational harimonics dominate.
In REF[Scheeres] some explicit formulae which compare these effects are given. To make the
proper comparison the “following constants must be computed and compared:

2
Ci = %Nﬁ a¥? Scalar Tide Effect

C, = —2%\/_ SRI" Effect (24)
C; = 342/57"75 Gravity Harmonics Effect

where each of these coefficients measures the potential secular rate of thenodeand argument of
periapsis. Of interest are the ratios of Ci/Cy and Cy/C; which compare the solar tide to the SRP
and the SRP tothe harmonics, respectively. Evaluating these ratios at Eros perihelion yields:

" N"q

C)C, = % (25)
= 1.97 x 1074

il v, — g(l

CQ/CJ " /AJ;72 (26)

= 3.48 X 10.—9(14

Equating the ratios to 1, we fiud that the SRY has a dominanteffect Over the solar tide for a <5084
km, and that the gravity harmonics has a dominant effect over the SRP for a < 144 km. Note that
there is a relatively long period of time when the spacecraft orbit radius is at 200 and 1000 km,
implying that the SRY effect on its orbit willbe the largest 1erturbaiion during this time.

4 Spacecraft Dynamics Close to Ems

Given a gravitational field and the rotational state of the model, the equations of motion of the
spacccraft may be written down. The most efficient expression of these equations is given in the
body-fixed frame of the asteroid. Given anintegrated result inthis frame, it is fairly easy to transform
hack to the inertial frame. Thebenefit of this formulation is that norotational transfarmations must
bemade to evauate the accelerations due to Eros gravity.

= Ploj )



Allowing for a genera] determination of the rotational dynamics, the body fixed equations of
motion for a small particle are (Greenwood, 1965, pp 50-51):

i?+29><1'-+Q><(er)+Q><l‘ = Ur (27)

where r is the body-fixed vector from the asteroid center of mass, (--) and (-- ) are first and second
time derivatives with respect to the body-fixed, rotating frame, € isthe instantaneous rotation
vector of the body with respect to inertial space and has magnitude |©2]=w, and Ur is the gradient
of the gravitational potential.

Note that this formulation allows for a "ON-CONStang rotation rate of Eros. Should there be a
non-principal axis rotation state the tenor of the dynamics will be quite different in some instances.
First of al], since the asteroid will be following the dynan lies of a torque-free rigid body rotation
state, the angular velocity vector Qin the body fixed framewillbe periodic, and hence the equations
of motion will be time-periodic. Other consequences are that the Jacobi integral will not exist, and
neither will the classical stationary orbits (they transform into periodic orbits). There are also a
number of other iimnportant consequences, some of which tend to stabilize the dynamics and some of
which tend to de-stabilize tile dynamics, but these are not discussed here. _

It is expected that Eros will be in near principal axis rotation, thuswe assume that |Q2]= O
and |Q= w = 3.3118 x 10~* radians/second (corresponding to arot at ion period of 5.27 hours).
Equate the direction of rotation with the z-axis and fix the z-axis along the smallest moment of
iucrtia; tile definition of the y-axis follows by the right-hand rule. The equations of motion in scalar
form are then:

P2y = Wwlo+4Us (28)
U4 2w = wiyd U, (29)
3 = U, (30)

4.1Jacobi Integral

Note that due to the assumptionof a uniform rotation rate¢ a Jacobi integral exists for this problem,
independent of the degree of irregularity of the gravitationalfield.Joestablish the integra’'s exis
tence one need only note that the equations of motion in the uniformly rotating, body-fixed frame
are time-invariant. The Jacobi constant C' is defined by the relation:

cC = V(in,y,2)-T (31)
where
Vi, e = 5l L)+ UG, 2) @
is the modified potential and
T % (#2+ §2 52 (33)

isthe kinetic energy of the particle with respect to the rotating asteroid. Given any initia conditions,
the constant C' is conserved for the ensuing motion.

4.1.1 Zero-Velocity Curves
The z~ro-velocity surfaces are defined for this system by the equation:

V(z, ,2) = C (34)



which defines a 2-din\ensional surface in the 3-dimensional 2 — y — 2space. Following is a section of
the mro-velocity surface takenalongthez =- O plane using the APL-0model (a hypothetical model
of Eros shape specified hy 4202 vertices and 8400 triangular faces). Notethe lack of symmetry,
which will beexpected in the rea asteroid shape as well.
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Figure 2: Zero-Velocity Curvein the x - y (2= O) Plane

Note the four areas where the zero-velocity curves intersect or close in upon themselves.
l.ocated here arc cqui]ibriu[n points, which are discussed in further detall inn Section 4.2.

4.1.2 Stability Against Crashing

The zero- velocity curve analysis can provide a ready estimate of when the spagcecraft is not in danger
of crashing onto the asteroid surface. The criterion was initially derived in REF({Scheeres] for an
attracting ellipsoid shape, but can easily be extended to a general gravitational potential. It is
developed as follows. Define the equilibriuin point along the 2z axis as the 4-S(addle) equilibrium
points, 1t is seen that these are the first points to bifurcate as the J acobjconstant decreases from
large, positive values. For any orbiter with a J acobi constant ¢’ > C4 s, the orbit is then separated
from the asteroid by the zero- velocity surface, which it cannot Cross. Thus,in these situations the
spacecraft is definitely stable against crashing on the asteroid, athough itmay still be gected from
the asteroid on a hyperbolic orbit. Figure 3 presents a curve which delineates between those orbits
which are definitely stable against crashing on the asteroid and those which are not. This curve only
applies to orbiters with an inclination within ~ 10° of the equator.

Note that this criterion only applies to direct, near-equatorial orbits.For retrograde, near-
equatorial orbits the results from Section 4.3 apply instead, and establish a uniforinstab ility against
crashing. Currendly, there is no uniformly applicable criterion for the case of near-polar orbits,




200 11T T T T T T/
180 |- Stable Against Cr'ashin%‘/,f" -
’
160 /;;
140 | o -
= /
& ’ _
£ 120 |- / /! J
% 100 |- !
£y /!
2 80 /7 -
60 |- ;/' —
- Circular
20 F ¥ -
0 ’ll j S N T | | S N !

O 20 40 60 80 100120140160180200

Periapsis (km

Figure 3: Curve for stability against crashing for low inclination orbiters

4.1.3 Resonance Effects

A simple, and illustrative, result can be derived which estimates the expected change in 2-body
energy ducto spacecraft interaction with the 2nd order gravitational harmonics. To begin the char-
acterization, expressthe 2-body energy in terms of body-fixed coordinates and tile Jacobi integral.
Doing so yields:

Cr = D Ui+ (Qxr) (xr)4 Q-(rx¥)- C (35)
where the gravitational potentiallU has been expressed as U= p/r + . U;, where the [Jrepresent

the higher orders of the gravitational potential. Differentiating the expression with respect to time
yields:

Cy = }: VU v+ 2(Qxr) - (2x5)+ Q. (rx¥) (36)

Substitute for r from the equations of motion and simplify t o find the final result:

Cp = Y VUi -(+2x1) (37)
i

where ¥y isthe spacecraft velocity vector as evauated in inertial space. Note that the gravitational
potentials Ui are still evaluated in the body-fixed, non-inertial coordinate system.Thismay aso be

related to thetime derivative of the osculating semi-major axis, as:

¢ o= - (39)
. '
¢y = E’aﬁa (40)




By comparison to the standard equations for the time derivatives of the osculating ("]“I'm“ts\(}“w[Kaula])
we note the interesting  relationship:

oF — .
n—(-)‘A—i = %‘\7U,‘ -y (41)
where n is the incan motion, ¥ is the perturbing potential and M is the iean anomaly.
in the following discussion! we only consider the gravity potential of 2nddegree:

20,
Uy = % [7—%—@ (3 sin? o -- 1)+ 31204, (1- sin® @) cos(‘z/\)} (42)
”

The gradient of this yields:

VU = (Ur - fg!ﬁUsina) Tt —’_U"i\?)‘_ (k X i) -+ “]‘Usin ok (43)
r 7" COS” (v T
where the angle Ais the longitude of the spacecraft in the body-fixed coordinatesystemn.

In the following, we apply this formula to the case of « direct, equatorialelliptic orbit and
derive an estimate on the total variation one may expect in the energy and semi-mgjor axis from
one periapsis passage. Assumning thatthe orbital motion takes place in the equatorial plane, we
have sin &« = O and cosa= 1. Next, assume that we evaluate the equation in the vicinity of
periapsis, and that periapsis remains constant during one passage, Performing a quadrature of these
equations symmetrically around periapsis eliminates any terms Which are odd about periapsis and
yields (approximatel y):

6uriCor [ iPa . (3 ~rp/7a) 1
ACy ~ ————= —sin 2y | = = 44
2 7‘3 2’[‘;,(1'(1 + 7'}:) IQW/3 — f;.( Iw - fp' ( )
where
; #(1+ e)
I = E (45)

is the angular rate of the spacecraft at periapsis. This relation only approximate and indicates the
largest transient variation which may be seen in €2, not necessarily the total variation in one pass.

Several conclusions can beimmediately drawn from these relationships. First, if the argument
of periapsis lics in thelst or 3rd quadrant of Yros, the energy of the orbitwill suffer a net decrease
and draw apoapsis towards the asteroid. Conversely if the argument of periapsislies in the 2nd or
4th quadrant, the energy will suffer a net increase, and rosy catapult tile spacecraft into an escape
trajectory. Consider a brief example. Suppose a spacecraft is in anelliptic orbit with 74 = 90
kim and r, = 40 km. Assuming that the orbit is direct and cquatorial {he change 11 apoapsis and
periapsis is estimated to be:

Ar, =~ —19sin2v km (46)
Ar, = 2sin 2v km 47

Suchalarge variation in the apses from orbit to orhit is not acceptable.

Figure4 plots the radius, periapsisandapoapsis of a spacecraft in a direct, equatorial orbit
with a periapsis passage through the Ist quadrant of Eros., Figure5 plotsthesame situation except
with a periapsis passage through the 2nd quadrant of Eros. Noteé how the apoapsis changes as
expected. Both results are from a precision trajectory integration.

10
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Figure 4: Radius, Periapsis and Apoapsis for a Ist Quadrant I'lyby

4.2 Body-Fixed Periodic Orbits

In a non-integrable environment such as:kros’, itisdiflicult to come up with definitive conclusions
on general spacecraft motions. Exceptions to this arise when either far fromthe asteroid or in near-
equatorial, retrograde orbits about the asteroid. When not in these conditions, recourse must be
made to other approaches to build up a picture of the dynamics about the asteroid. The computation
and analysis of body-fixed periodic orbits is the first, and simplest, step towards understanding these
complicated dynamics. The man intent is to determine tile stability of these orbits, as this then
provides information which impacts the stability and predictability of orbitsinthe region of these
families.

Clear from Figure 2 is the existence of four equilibrium points about the A P1.-0Iros model.
At these points there will be a net zero acceleration acting on the particle in the rotating frame.
These are circular orbits which are exactly synchronous witli Eros rotat ion rate. A more direct
manner of computing these orbits, or equilibrium points, is by solving the agebraic eguations:

Volz, v,2) = 0 (48)
Vo(z, y,2) = 0 (49)
Vi(z, y,2) = 0 (50)

for al values of 2,y, z which satisfy them. Note that there is no a priori number of solutions to these
equations. Depending on the shape and spin rate of the body, there could be a different number of
solutions. 1t is important to note that these solutions exist uniquely despite the lack of symmetry
in the gravity field.

For the nomina Eros model all four of the synchronous orbits arc unstable. The two points
located near the ends of the asteroid are hyperbolicaly unstable, thus any particle displaced from
these body-fixed points will depart from that point on a loca hyperbola. The two points located
along the long side of the asteroid are cornplex unstable, thus any particle displaced from these
orbits will depart from that point on a local spiral. As dl the synchronous orbits about Eros are
unstable (for al current models),it may be classified as a Type 11 asteroid (REF[Schecres]).

A number of periodic orbit families have been found for the current h-es models. These
arc convenicntly split into three main groups (not counting the equilibrivin points): direct, near-
equatorial orbits; retrograde, ncar-equatorial orbits; near-resonant, non-planar orbits.

11
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Figure 5. Radius, Periapsis and Apoapsis for a 2nd Quadrant Flyby

The direct, near-equatorial family originates as a circular, equatorial family far from the
asteroid, As it movestosmaller radii, it retains this character until it bifurcates into two elliptical
orbit branches. These families arestable until they reach aradius of approximately 37 km, where
they becomeunstable (Reference [Scheeres]). The instability of these orbits is rather severe, as the
unstable manifolds tend to interact closely with the asteroid surface and cause a perturbed particle
to impact, or escape from the asteroid in a short time scale ontheorder of days or weeks, In general,
any direct orbit with a periapsis less than 40 to 50 kinshould be carefully investigated to ensure
that it does not suffer large changes to its osculating clements.

The retrograde, near-equatorial family also originatesas a circular, equatorial family far from
the asteroid. However, as it moves to smaller radii, it never bifurcates in the plane and retains its
circular character until it terminates by intersection with the asteroid surface. This family remains
stable up to intersection with the asteroid surface, indicating that it is an attractive candidate for
flying close to the asteroid surface.

The near-resonant, non-planar orbits tend to exist only in the vicinity of select radii where
the particle’s period of out-of-plane oscillation is commensurate withthe asteroid rotation rate.
When this situation occurs, it is possible for the particle orbit toclose upon itself in the body-fixed
reference frame. This, in turn, allows for an anaysis of the stability of this motion. Otherwise, it is
difficult to ascertain the stability of such non-planar orbits. Two main families of these orbits have
been found. One of these families emanates from the halo orbits surrounding t he equilibrium points
discussed previously and travel through polar orbits and teriminate on anot her of the equilibrium
points halo orbit. Such families remain unstable throughout, and have aradius of approximately
20 km. A second pair of such non-planar familieshas a periodroughly twice the rotation period of
Eros at a radius of 30 to 35 kin. This family remans unstable throughout ruost of its evolution as
well, except for a small portion when it retains much of its near- circular character and its inclination
grows above = 130°. ‘he existence of this stable interval is important as it providesan indication
of the degree to which a retrograde, near-circular orbit may depart from the equator and still retain
its stability. in this instance, il appears that orbit inclinations less than 130° at an orbit radius of
~35 kinare definitely unstable.
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4.3 Non-Synchronous Motions

When in ap,orbit far from the asteroid or in a retrograde, near-equatorial orbit, there is asimn-
plification which can be introduced into the problem. In both of these conditions (as discussed in
REF[Scheeres]), the gravitational potential ¢/ may be replaced by a rotationally symmetric potential
without compromising the nature of the dynamics. Thissimplifies the analysis a great deal, as then
one may refer to the theory of planetary orbiters for which there is a wealth of literature (Reference
[.]).

In such an environment, it is fruitful to describe the orbits in termsof averaged osculating ele-
ments, as these contain most of the information and dynamics of interest. Then it is well established
that the semi-major axis, cccentricity and inclinationremain constant on average with short period
oscillations. Theremaining elements; the argument of periapsis, the longitude of the ascending node
and the epoch of periapsis, contain secular variations. Retaining only the lowest degree gravitational
parameter C20 = —J2, the dynamics of these elements are described by (RITF[Danby]):i

a0

i —(’; cosi (51)
dw B 5 .9
a - -Cj [—2 sin® 7 - 2] (52)
M L g iTE 32.?”2’_]1 (53)
dt [
where
y 3n g
y = (54)
n = a% (55)
p = a(l-¢? (56)

For the nomina Eros model a an orbital radius of 35 km (and in a retrograde orbit), the value of
Cyis 33.8 degrees/day, at an orbital radius of 50 km the value of Cis 9.7 deg/day. Thus, when
within a few radii of Eros, the secular change in the node and argument of periapsis may be quite
large.

5 Orbit Control

The orbit control philosophy on the NISAR spacecraft may be broken into two phases. The first
phase deals with orbits that have periapsis greater than 100 km. in thisregime traditional targeting
approaches can be used, and these should suflice to control the orbit to the desired level of accuracy.
The second phase concerns itsell with orbits that have their periapsis within 100 ki of the asteroid.
in this regime, special care must often be taken indesigning a control methodology and in targeting
the spacecraft maneuvers to achieve specific spacecraft states. The following section deals exclusively
with the control of orbits when within 100 km of the asteroid.

5.1 Mission Constraints

Once the spacecraft achieves orbit about Eros and the science phase of the mission begins, there
are anumber of mission design constraints which must be adhered to. These constraints drive the
control of the orbit during this phase and place restrictions on what orbits are flown and when they
arc flown. A heuristic statement of the mission design constraints follow:

. Thespacccraft orbit shouldbe safe and stable for a t imespan of weeks
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. Thespacecraft orbit normal should lie within 30° of the Farth whenin low orbits (e.g. 35kmn
radius), and lie within 20° of the Earth when in high orbits (e.g. 50 kinradius and higher)

. The spacecraft orbit normal should lie within 20° of the Sun for the first 100 days of the science
phase mission, and lie within 300 of the Sun for the remainder of the miission

« Normally, there shall he nolessthan 7 clays between maneuvers
. Thetotal orbital mission phase AV expenditure shall remain less than 100 m/s

. The spacecraft shall orbit as low as possible (nominally a a 35k radius) for as long as
possible without_violating any of the above constraints

The two constraints on the spacecraft orbit normal are actually to be appledtothe spacecraft
orient ation itself. However, assuming a nominally nadir pointing spacecraft, these constraints may
be applied to the orbit normal. These mission design constraints can be realizedby controlling the
spacecraft orbit inclination, node and radius. These are discussed in more detailbelow.

5.2 Inclination Control

The first constraint onthe orbit is that it be safe and stable during the mission duration. This
constraint is rost easily met by specifying that the orbitinust alwaysbe retrograde with respect to
the asteroid rotation pole. Flying the orbit in this mode will usually ensure that the spacecraft will
be non-synchronous with the asteroid rotation rate andnot aflectedby the instabilities associated
withdirect orhits. To keep this constraint throughout the mission will require that the spacecraft
orhit be changed by 180° aroundthe mid-point of the mission( a a nomina cost of 8.3mn/s). This
is necessary since the rotation pole of Iiros lies in its orbital plane and since the orbit normal must
follow the Sun andIarth. Note thatwhenthe spacecraft is inan especially close orbit, such as the
35km orbits, the inclination restriction must be tight ened. nNom analysis involving periodic orbit
families, it is seenthat this constraint is 7 >130°at least. At 50 km orbits, the constraint can be
relaxed to i > '30°.

Following this retrograde strategy should also ensure that the inclinat ion, semi-major axis
and eccentricity will suffer no long-termsecular effects, although they may have sizable short period
oscillations.

5.3 Plane-of-Sky Control

Forcing the orbit plane t0 comply with the two planc-of-sky constraints consumesthe majority of
effort during the orbital phase, and drives the mission profile for the rost part. A plane-of-sky
const raint angle of i forces the orbit normal to point within i degrees of the body in question (the
Earth or Sun). Under the natural dynamics of theorbit plane about the asteroid, the orbit normal
will precess shout the asteroid rotation pole and usually will leave the constraint cone after a while.
Priorto this violation a plane changemaneuver must be performed to reset the orbit normal within
the constraint cone again. ldeally, the plane change maneuver will not change the orbit inclination,
but willonly rotate the argument of the ascending node, as measured in the asteroid equator.
Often, in planctary situations, a plane change manecuver is executed so as to minimize fuel
consumption. This is usually possible by raising apoapsis to a higher altitude and effecting the
change there, where the fuel cost is less. In the NEAR mission application such a fuel optimnal
scheme is not followed for several reasons, the foremost being that the total fuel cost for making a
plane change manecuver is fairly small due to the small speeds of the spacecraft about the asteroid,
and that such an implementation would waste precious time and make the orbit operations phase
more intense. Rather, in designing the orbit plane control it is the mancuver frequency which is
minimized (i.e., thetime between maneuvers is maximized) Thisis effected by understanding
the orbit plane’dynamics and reseting them so that the time to thenext constraint violation is
maxitnized. This approach is briefly discussedinthe following, for both one and two constraints.
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5.3.1 Single Constraint

First define the orbit normal vector and the constraint vector:

w, = sinQsinie — cosQgindy -k cos i3 (57)

u; = sin§sniz— cos Qysin i1y + cosiyz (58)

where #,7 and Z arc the unit vectors associated with an equatorial, inertial coordinate system
chosen so that the asteroid rotation polelies along the 5 direction and the equator lies in the i-y
plane, Qisthe orbit node, i is the orbit inclination, €2, is the node of the constraint vector and
t1isthe inclination of the constraint vector. Associated with the constraint vector is a constraint
angle ic, which we currently assume to be < n/4. The plane-of-sky constraint then states that
the orbit normal vector must lie witbin an angle i¢, of the constraint vector i, defining a conc
ahout the vectoru;. The plane-of-sky inclination of the spacecraft orbit is the angle £, defined as

cos P =up-uy, or explicitly as:
cos i == gni siniicos(Qy-- Q)+ cosicos iy (59)

For the moment ignore the dynamics of the constraint vector, which is ingeneral moving across
the sky. Thenthe only significant dynamics to consider (assuming that the orbit is stable and well
behaved) is that of the orbit node:Q = Q. — tC;cosi. We €an choose, without loss of generality,

Qo = 1, thereby siinplifying the expression:
Cos Py = sini sinficos({Cjcosi) + cosicosi (60)
Note the following inequalities:
cos(i + 4;) < cCos Py <cos(i - 1) (61)

Then the constraint cone is defined by the condition:

ic, > P (62)

or
Cosic, < Cos I} (63)
cos i¢c, < sinisini;cos(tC;cosi)+ cosicost (64)

For this inequality tobe satisfied tbc inclinationinust liein the range:
ie b —ic i1 tic] (65)

If { is not in this interval, then the constraint is never met. Given an inclination within this interval,
the constraint inay be trivially met- by setting ¢ = O. However, as time progresses the inequality may
again be Violated due to the secular change in thenode.

Refering to Incquality 61, we sce that if

Cos i¢, < cos(i+1;) (66)

the constraint is never violated and the node can move through a 27z rotation without leaving the
constraint cone. Ilse, if

cos(i + 1y ) <cos t¢, cos(t - 1y ) (67)

the constraint will be reached at time 7"

1 ¢as i, -- COSi COS 1
T'(3) == ———-— arccos - -[E*(W""‘ - (68)

Cj cost sin{sin ¢y 1




Then, perforing a mancuver to place the orbit node at Q; + ¢, cos 7', the time until the constraint
is violated again is 27°. Thus, t0 maximize the time between maneuvers it is necessary to Inaxlnize
the value of 7' with respect to inclination i. Note that the coeflicient C; adds nothing to the
problem and can be ignored, implying that the optimnizationis purely geornetric and involves no
physical quantities

The procedure for the optimization is sketched out below. First, if 0,7m/2 or m€[iy - i¢,, 1, +
ic,], then the time optimal inclination is whichever of the three lie in theinterval. in al three
cases the orhit normal remains fixed in space, and the constraint is satisfied until the constraint
vector ujmoves sufliciently. If neither of these situations occur, then the function 7'(¢) must he
maximized with respect to inclination i. This is a fairly simple procedure and requires the solution
of &7'/9i = O. Upon solution, we have the time-optimal inclination i* and the maximum time 7™
over the possible values. Thus the orbit plane normal vector which maximnizes the time to the next
mancuver is specified by the inclination 7 and the node %=+ Cjcos™T™, leading to the

optimal orbit plane normal:
up == SnQsini"E-- cos QT sin i’y + cos "z (69)

A further result should also be noted. If the constraint angleic, = 7/4, then the time-optimal
control reduces to a series of inclinations at O, #/2 andn. The spacecraft remains a one of these
inclinations until the constraint becomes violated due to the motion of u;. Then a90° plane change

mancuver is performedto the next inclination which satisfies the constraint. _
To execute the mancuver, the orbit must be propagatedup to the point where its current,

or-bit plane intersects with the desired plane, defined above. When at this intersection, a mancuver is
perforined which rotates the velocity vector by an angle 2 arcsin [sin i ®"(7'Cjcos i)], with @ maneuver
magnitude of AV =2V sinisin(7'Cj cos i), where V is the magnitude of the spacecraft velocity. In
actuality, thevalues of 11and €2 vary in time, causing the above analysis to be a bit naive. Note,
however, that inthis case the above approach is applicable with only slightnodification.

5,3.2 Multiple Constraints

Thesituationismademnore difficult when multiple constraint cones exist. The same approach applies
in general, although now thechecking conditions andtimme optimization is more difficult. For the
NEAR mission there are two cones, which the orbit normal must lie in, called Cy and C; and defined
by a unit vector u; and constraint angleic, (i =1,2). “1'best cones correspond to the Earth and
Sun respectively. ‘1'here are three cases to consider here:

aGn ¢ o= 0 (70)
C;iNng; € C; (71)
CGneG ¢ { ((-2,) (72)

where7 and jtake on the values 1 or 2 exclusively. Condition 70 means that the constraints are
mutually exclusive and cannot be met simultaneously, thus a choice must be made as to which, if
either, constraint is to bemet.This condition occurs when:

uy cuy < cosic, -ticy) (73)

Condition 71 meansthat one of the constraint cones lies entirely within the other, and thus the
single constraiut control as described in the previous Subsection can be applied. This condition
occurs when:

u; Uz > cos(ic, -- ic, ) (74)

Condition 72 means that the constraints intersect) but neither lies com pletely Wit_hin the
other. T'hetopology of the intersection of these concs describes avariety of potentially different
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shapes. 1t is possible, however, to find the “hounding box“ in terms of inclination and node, within

whit.11 this area must lie. Simply put:

CinCe 1 (75)
I = {iQ]
i € [max (i, —ic,,i2 — ic,), min (i1 +ic,, tv 4 ic, )]
Q) € [max(§2y — AQy, Q2 — AQ), min(Qy + AQq, Q2 4 AQy)]} (76)
AQ; =  arccos 22&:&’29_0_5_’1_ (n)
SNl Sin g

Note that /¢ Cin Czin general, thus the set I may contain angles that are not in the constraint
zone. lHowever, these areas tend to be small.

Again, if O, 7/2 or wlie within I (and more specifically within Ci"C;), then these are once
again thetime optimal solutions. If not, then it, is necessary to maximize the time which the orbit
normaltakes to move across the constraint interval in the nodal dimension, where this timeT' is
now computed as:

AQ .
N\ U 78
@) Cjcost (78)
AQ = min(Q) + AQy, Q2 4+ AQ) — max () — ARy, Q2 ~ AQy) (79)

and where A€l is defined in Equation 77. In the case of a single constraint the function 7°(¢) was a
continuous and smooth function of inclination. in the current multiple constraint case the function
7'(:) is now only continuous and not necessarily simooth with respect to inclination. However, it is
still possible to robustly solve this equation for the time optimal inclination i* and node £2* which
then define the new orbit planc normaluj.

5.4 Radius Control

When orbiting closely to a body such as Eros, the use of osculating Keplerian elements for targeting
and orbit description is not well defined in general and use of such elemients to design orbits and
execute maneuvers could have negative consequences. For an interesting example of the potential
deviation of NEAR orbits from the usua osculating Keplerian elements, see Figure 6 which shows the
radius, osculating periapsis and osculating apoapsis of a near-circular, retrograde, equatorial orbit.
Among the observations to make: the orbit never goes through apoapsis due to the large secular °
rates of its argument of peri apsis, the orbit goes through multiple periapsis passages during one
revolution, and the osculating elements have large amplitude, high frequency terms. Nonetheless,
the orbit in question is extremely stable and has no danger of impact or escape. Similar examples
abound. The implication drawn from examples such at these are that the osculating elements arc
no longer reliable as predictors of an orhit's future evolut ion, and hencearenot necessarily good
targeting parameters. Fiven so, the orbits still retain some characteristic features which canbeused
tot arget maneu vers.,

Ior targeting from a higher, circular orbit to a specified periapsis radius the following proce-
dureis used. Given an initial state ro, v, define the propagated spacecraft orbit by ¥{(Z;rs, v, ), v(¢; ¥, Vo).
Next enforce the restriction rov, = O and a desired orbit plane, thus leaving the magnitude of
the initial velocity v, =|v,| as the free parameter in the targeting problem. Define the functions
7(t,v0) = r-v/irjandr(t,v,) = |r|. Now define a Poincaré Map from#(0,v,) = O to #(7,v,) = O,
and choose the initial velocity v, to solve the equation (7, v,) — 7p == O where 7p is the desired
periapsis radius and T is solved for from the implicit equation (7", v,)=: 0. This equation is solved
using a Newton iteration algorithm, where the partial of these functions canbe expressed via the (
state transition matrix. This approach diveroces itself from osculating; orbital elements and only -
relics on the geometry of the problem. The argument of this true periapsis is controlled by timing
the initial maneuver epoch.
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I'igure 6: Radius, Apoapsis and Periapsis of anear- circular, retrograde orbit

Once the proper pertapsis is targeted and the spacecraft arrives at this radius, it is necessary
to design the next manecuverto circularize the orbit. Approaching this task witha traditional appeal
to osculating elements again fails to provide a very circular orbit. A better approach is to employ the
averaged theory developed for orbiters aboutoblate bodies (RIF{many ), athough this still may
not yield acceptable results. Through a variety of experiments, 1t has been found that a robust and
simple way to findthe proper initid conditions (the velocity) for a circular orbit at a low asteroid
altitude is to apply a least-squares approach in targeting the velocity. Given is the initial radius r,
and desired is to choosetheinitial velocity v,,subject to the constraint Yo v, = 0 (and with the’
desired orbit plane specified), such that the ensuing orbit is as circular as possible. To do so the
initial velocity magnitude v, is chosen to minimize the function:

J = —;j[r’(t, vo)- )" dt (80)

where aisthe circular orbit radius desired. To perform this minimization it iSnecessary to solve
the equation:

aJ 7 or
= /e [t 00) = @l 5t = O 1)

where the partials are evaluated from the state transition matrix. See Figure 7 for a comparision
between the radii of three orbits started at a radius of 35km in a ret rograde, equatorial orbit. The
initial velocity of these orbits was started normal to theinitial radius, and theinitial velocity mag-
nitude was chosen hy one of the three different methodologies: local circular with no modifications,
local circular using modifications from averaged planetary thcory, ad the minimizing initial velocity
from the above scheme.

From Figure 7 it is obvious that the nominal circular velocity is unacceptable for maneuver
design as it leads to a ~10% variation in radius (3.5 km)and an effective eccentricity of 0.053.
The averaged approach does better, With only a 3.4°/0 variation in radius (1.2 km) and an eflective
eccentricity of 0.017. However, the least-squares approach yields aradins variation of less than
0.35% (0.12 kmn)and an effective eccentricity of less than 0.003. Thus, the least-squares approach
yields a truly near-circular orbit. Moreimportantly, it allows for a greater degree of control over the
subsequent or-bit.
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Figure 7. Comparison of initid orbit speed values

With the combination of these two targeting strategies for radial control (along with modifi-
cations to them as needed), it is possible to exert a great degree of controlover the orbita radius,’
enabling eliptic orbits will specific, targeted apses and orbits which are as circular as possible. This ¢
level of control will be important,asit implies the ability of navigation to deliver orbits to desired;
geometries and conditions. A

5.5 Uncontrolled Elements

Thus far specific mention hasbeen made of controlling four of the six classical elements: a, ¢, and
. Not considered yet is the control of the the argument of periapsisw and of the time of periapsis
passage of the orbit 7,. Thus far, there have been no specific requircinents that the argument
of periapsis be controlled during the orbital phase. in far-t, most of the nominal science mapping
phase is spent in near circular orbits where the location of the periapsis vector is not a significant
consideration. During a few weeks at the beginning of the orbital phaseand at the middle of the
orbital phase, the spacecraft is nominaly in an éliptic 35 x50 km orbit. During these times it will
be important to carefully target the argument periapsisso that the orbit periapsis lies ahove those
regions whose gravity is to be measured. During these orbits,the secular rate of change of the
periapsis will be taken to advantage, as it will allow the perapsisto sweep across a range of latitude,
providing a more complete survey of the asteroid gravity field.

The final orbital element 7o relates tothe timing of the spacecraft inthe orbit. Requirements
have not been given as of yet on the necessary targeting acc uracy needed in this element. Specifically,
if it is desired to fly over a particular portion of tile asteroid surface, it is necessary to then control
the timing of the spacecraft in the orbit as well as the orbit plane itself. It is usually possible to effect
fine control of the orbit timing by adjusting the orbit semi-major axis by small amounts. There arc
practicallimits within which such adjustments inay be made, however. Thus it will be imperative
that the orbit timing not be alowed to stray too far from the desired nominal flight path. Should
this occur, either a new nominal path would be chosen or a pair of larger timing maneuvers would
have to bemade.
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6 Pre-Mission Planning and Plans

Combining the above mnission design constraints, nNavigation needs and scientific concerns, a nominal
mission plan has been developed which takes the mission from Eros closest d@)pi-each on February
6, 1999 through Decernber 31, 1999, theofficial end date of the mission. Table 1 (Reference[C DRY])
summarizes the major events of the nominal mission planand briefly indicates the rationale behind
each phase. Note that the mass and J2 term used for designing the nominal mission are derived
from the values given in REF[Yeomans].

Date Day Description Orbits , inclination Length  Goals
o (kmxkm) — (degrecs) (days)
2/ 6/99 0 Fros C/A " Hyperbolic
2; 8/99 2 [Insertion 1000 x 1000 = 147 14 2nd® Gravity
2/22/99 16 Transfer 1000 — 200 155 7
3/ 1/99 23  Characterize 200 x 200 ~ 162 10 4th°® Gravity
3/11/99 33  Transfer 200 + 50 ~ 168 4
3/15/99 37  Characterize 50 X50 17( 1 7 Gravity
3/22/99 44  Characterize 50 x3.5 170 7 Gravity
3/29/99 51  Characterize 35 X50 170 7 Gravity
4/ 5/99 58  Mapping 35 x 35 >175 TBD 52 SciencePhase
5/27/99 110  Mapping 50 X 50 150- 90 68 Scicnce Phase
8/ 3/99 178  Characterize 50x 35 90 14 Gravity
8/17/99 192  Mapping 55x 55 90 ¢ SciencePhase
8/23/99 198  Mapping 55X 55 Plane-flip Maneuver (-) Science }'base
8/23/99 198 Mapping 55x 55 90 —» 167 79  Science Phase
11/10/99 277  Mapping 35 x35 > 145 TBD 40 Science Phase
12/20/99 317  Mapping 50 X50 ~ 148 11 Science Phase

12/31/99 328  knd of Mission

“I"able 1: Nominal Mission Timeline

Some of the missionsuramaries of interest are:
¢ Total deterministic AV expenditure is 58.2 m/s

¢ Science days (256 tota):

92 days at the35 x 35 ki equatorial, retrograde orbit

79 days at the 50 x 50 krn orbits (inclination from 150- 90°)

85 days at the 55 x 55 ki orbits (inclination from 90 — ]67°)

30 days in polar orhit, 14 devoted to navigation g avity mapping

Additional sub-solar flyover possible during plane- flip maneuver (around day 198)

« Gravity Mapping periods:

1 week at 50 x 50 at start of mission
I week a 35 x 50 with periapsis 10° above the equator at start of mission
1 week at 35 x 50 with periapsis 10° below the equator at start of mission
2 weeks at 35 x 50 polar orbit with periapsis a high latitudes
Inhnplementing themission design constraints it was found that the 35 x 35 orbits were only
feasible when tile Sun and Earth vectors lay close to the rotation pole of 1 iros, and the spacecraft

could fly in a near-equatorial orbit without having to perforin active maneuversto control the orhit
node. Should the spacecraft performsuch maneuvers while at this altitude, the constraint on the
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maneuver frequency would be violated: which would in turn impact the operational intensity of the
mission during this phase. Thedates of these two periods of 35 x 35 orbits are from 4/5/99 through
5/27/99 and from 11/10/99 through 12/20/99. The initial period is shortened somewhat from its
potential length due to navigation activities necessary to Sup port a transfer to such a low orbit. Au
earlier arrival date would alleviate this penalty and add up to 15 days at the low altitude. Should
the actua rotation pole a Frosbe significantly different fromthe current nominal value, the mission
timeline may be significantly perturbed. Figure8 shows the Sun and Earth inclination as rmeasured
from the rotation pole of Fros. A necessary condition for the spacecraft, tofly at the lower altitude
orbits without having to make frequent plane changes is that both the Sunand Earth be within
their constraint angles ic or m — ¢ of the Eros rotation pole.
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Figure 8: Sun and Earth inclination with respect to Fros’ Rotation Pole

There are a variety of science issues and concerns that have not been dealt with to date. These
include modifying the orbit inclination during the 35 x 3501 bit phases to allow for different viewing
geometries, Of considering what possible off-nadir pointing constraints apply to the spacecraft during
the mission. While in the 35 x 35 orbit phase, it costs &~ 9.4 crni/sec for every degree of plane change,
yielding amnple margin for a variety of plane change maneuvers at this altitude, if desirable. There
will stillbe time constraints on the frequency of such maneuvers, and some assurance must aways be
present, that the spacecraft, orbit will in fact be stable at the desired itlclirlation/dtitude combination.

7 Conclusions

TheNEAR mission to the asteroid Iros will provide a challenge to traditional approaches to or-
bit control and targeting. By flying in such a dynamic cnvironment, opportunities to find new
phenomnenon and to complement existing understanding of orbital dynainics will abound. Chal-
lenges will assert themselves in many forms, fromsupport iug scientific goals to safely controlling
and navigating the spacecraft in its orbit.
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